home *** CD-ROM | disk | FTP | other *** search
- /* specfunc/zeta.c
- *
- * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or (at
- * your option) any later version.
- *
- * This program is distributed in the hope that it will be useful, but
- * WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- * General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program; if not, write to the Free Software
- * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
- */
-
- /* Author: G. Jungman */
-
- #include <config.h>
- #include <gsl/gsl_math.h>
- #include <gsl/gsl_errno.h>
- #include <gsl/gsl_sf_elementary.h>
- #include <gsl/gsl_sf_exp.h>
- #include <gsl/gsl_sf_gamma.h>
- #include <gsl/gsl_sf_pow_int.h>
- #include <gsl/gsl_sf_zeta.h>
-
- #include "error.h"
-
- #include "chebyshev.h"
- #include "cheb_eval.c"
-
- #define LogTwoPi_ 1.8378770664093454835606594728111235279723
-
-
- /*-*-*-*-*-*-*-*-*-*-*-* Private Section *-*-*-*-*-*-*-*-*-*-*-*/
-
- /* chebyshev fit for (s(t)-1)Zeta[s(t)]
- * s(t)= (t+1)/2
- * -1 <= t <= 1
- */
- static double zeta_xlt1_data[14] = {
- 1.48018677156931561235192914649,
- 0.25012062539889426471999938167,
- 0.00991137502135360774243761467,
- -0.00012084759656676410329833091,
- -4.7585866367662556504652535281e-06,
- 2.2229946694466391855561441361e-07,
- -2.2237496498030257121309056582e-09,
- -1.0173226513229028319420799028e-10,
- 4.3756643450424558284466248449e-12,
- -6.2229632593100551465504090814e-14,
- -6.6116201003272207115277520305e-16,
- 4.9477279533373912324518463830e-17,
- -1.0429819093456189719660003522e-18,
- 6.9925216166580021051464412040e-21,
- };
- static cheb_series zeta_xlt1_cs = {
- zeta_xlt1_data,
- 13,
- -1, 1,
- 8
- };
-
- /* chebyshev fit for (s(t)-1)Zeta[s(t)]
- * s(t)= (19t+21)/2
- * -1 <= t <= 1
- */
- static double zeta_xgt1_data[30] = {
- 19.3918515726724119415911269006,
- 9.1525329692510756181581271500,
- 0.2427897658867379985365270155,
- -0.1339000688262027338316641329,
- 0.0577827064065028595578410202,
- -0.0187625983754002298566409700,
- 0.0039403014258320354840823803,
- -0.0000581508273158127963598882,
- -0.0003756148907214820704594549,
- 0.0001892530548109214349092999,
- -0.0000549032199695513496115090,
- 8.7086484008939038610413331863e-6,
- 6.4609477924811889068410083425e-7,
- -9.6749773915059089205835337136e-7,
- 3.6585400766767257736982342461e-7,
- -8.4592516427275164351876072573e-8,
- 9.9956786144497936572288988883e-9,
- 1.4260036420951118112457144842e-9,
- -1.1761968823382879195380320948e-9,
- 3.7114575899785204664648987295e-10,
- -7.4756855194210961661210215325e-11,
- 7.8536934209183700456512982968e-12,
- 9.9827182259685539619810406271e-13,
- -7.5276687030192221587850302453e-13,
- 2.1955026393964279988917878654e-13,
- -4.1934859852834647427576319246e-14,
- 4.6341149635933550715779074274e-15,
- 2.3742488509048340106830309402e-16,
- -2.7276516388124786119323824391e-16,
- 7.8473570134636044722154797225e-17
- };
- static cheb_series zeta_xgt1_cs = {
- zeta_xgt1_data,
- 29,
- -1, 1,
- 17
- };
-
-
- /* assumes s >= 0 and s != 1.0 */
- inline
- static int
- riemann_zeta_sgt0(double s, gsl_sf_result * result)
- {
- if(s < 1.0) {
- gsl_sf_result c;
- cheb_eval_e(&zeta_xlt1_cs, 2.0*s - 1.0, &c);
- result->val = c.val / (s - 1.0);
- result->err = c.err / fabs(s-1.0) + GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(s <= 20.0) {
- double x = (2.0*s - 21.0)/19.0;
- gsl_sf_result c;
- cheb_eval_e(&zeta_xgt1_cs, x, &c);
- result->val = c.val / (s - 1.0);
- result->err = c.err / (s - 1.0) + GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- double f2 = 1.0 - pow(2.0,-s);
- double f3 = 1.0 - pow(3.0,-s);
- double f5 = 1.0 - pow(5.0,-s);
- double f7 = 1.0 - pow(7.0,-s);
- result->val = 1.0/(f2*f3*f5*f7);
- result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- }
-
- inline
- static int
- riemann_zeta1m_slt0(double s, gsl_sf_result * result)
- {
- if(s > -19.0) {
- double x = (-19 - 2.0*s)/19.0;
- gsl_sf_result c;
- cheb_eval_e(&zeta_xgt1_cs, x, &c);
- result->val = c.val / (-s);
- result->err = c.err / (-s) + GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- double f2 = 1.0 - pow(2.0,-(1.0-s));
- double f3 = 1.0 - pow(3.0,-(1.0-s));
- double f5 = 1.0 - pow(5.0,-(1.0-s));
- double f7 = 1.0 - pow(7.0,-(1.0-s));
- result->val = 1.0/(f2*f3*f5*f7);
- result->err = 3.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- }
-
- /* zeta(n) */
- #define ZETA_POS_TABLE_NMAX 100
- static double zeta_pos_int_table[ZETA_POS_TABLE_NMAX+1] = {
- -0.50000000000000000000000000000, /* zeta(0) */
- 0.0 /* FIXME: DirectedInfinity() */, /* zeta(1) */
- 1.64493406684822643647241516665, /* ... */
- 1.20205690315959428539973816151,
- 1.08232323371113819151600369654,
- 1.03692775514336992633136548646,
- 1.01734306198444913971451792979,
- 1.00834927738192282683979754985,
- 1.00407735619794433937868523851,
- 1.00200839282608221441785276923,
- 1.00099457512781808533714595890,
- 1.00049418860411946455870228253,
- 1.00024608655330804829863799805,
- 1.00012271334757848914675183653,
- 1.00006124813505870482925854511,
- 1.00003058823630702049355172851,
- 1.00001528225940865187173257149,
- 1.00000763719763789976227360029,
- 1.00000381729326499983985646164,
- 1.00000190821271655393892565696,
- 1.00000095396203387279611315204,
- 1.00000047693298678780646311672,
- 1.00000023845050272773299000365,
- 1.00000011921992596531107306779,
- 1.00000005960818905125947961244,
- 1.00000002980350351465228018606,
- 1.00000001490155482836504123466,
- 1.00000000745071178983542949198,
- 1.00000000372533402478845705482,
- 1.00000000186265972351304900640,
- 1.00000000093132743241966818287,
- 1.00000000046566290650337840730,
- 1.00000000023283118336765054920,
- 1.00000000011641550172700519776,
- 1.00000000005820772087902700889,
- 1.00000000002910385044497099687,
- 1.00000000001455192189104198424,
- 1.00000000000727595983505748101,
- 1.00000000000363797954737865119,
- 1.00000000000181898965030706595,
- 1.00000000000090949478402638893,
- 1.00000000000045474737830421540,
- 1.00000000000022737368458246525,
- 1.00000000000011368684076802278,
- 1.00000000000005684341987627586,
- 1.00000000000002842170976889302,
- 1.00000000000001421085482803161,
- 1.00000000000000710542739521085,
- 1.00000000000000355271369133711,
- 1.00000000000000177635684357912,
- 1.00000000000000088817842109308,
- 1.00000000000000044408921031438,
- 1.00000000000000022204460507980,
- 1.00000000000000011102230251411,
- 1.00000000000000005551115124845,
- 1.00000000000000002775557562136,
- 1.00000000000000001387778780973,
- 1.00000000000000000693889390454,
- 1.00000000000000000346944695217,
- 1.00000000000000000173472347605,
- 1.00000000000000000086736173801,
- 1.00000000000000000043368086900,
- 1.00000000000000000021684043450,
- 1.00000000000000000010842021725,
- 1.00000000000000000005421010862,
- 1.00000000000000000002710505431,
- 1.00000000000000000001355252716,
- 1.00000000000000000000677626358,
- 1.00000000000000000000338813179,
- 1.00000000000000000000169406589,
- 1.00000000000000000000084703295,
- 1.00000000000000000000042351647,
- 1.00000000000000000000021175824,
- 1.00000000000000000000010587912,
- 1.00000000000000000000005293956,
- 1.00000000000000000000002646978,
- 1.00000000000000000000001323489,
- 1.00000000000000000000000661744,
- 1.00000000000000000000000330872,
- 1.00000000000000000000000165436,
- 1.00000000000000000000000082718,
- 1.00000000000000000000000041359,
- 1.00000000000000000000000020680,
- 1.00000000000000000000000010340,
- 1.00000000000000000000000005170,
- 1.00000000000000000000000002585,
- 1.00000000000000000000000001292,
- 1.00000000000000000000000000646,
- 1.00000000000000000000000000323,
- 1.00000000000000000000000000162,
- 1.00000000000000000000000000081,
- 1.00000000000000000000000000040,
- 1.00000000000000000000000000020,
- 1.00000000000000000000000000010,
- 1.00000000000000000000000000005,
- 1.00000000000000000000000000003,
- 1.00000000000000000000000000001,
- 1.00000000000000000000000000001,
- 1.00000000000000000000000000000,
- 1.00000000000000000000000000000,
- 1.00000000000000000000000000000
- };
- #define ZETA_NEG_TABLE_NMAX 99
- #define ZETA_NEG_TABLE_SIZE 50
- static double zeta_neg_int_table[ZETA_NEG_TABLE_SIZE] = {
- -0.083333333333333333333333333333, /* zeta(-1) */
- 0.008333333333333333333333333333, /* zeta(-3) */
- -0.003968253968253968253968253968, /* ... */
- 0.004166666666666666666666666667,
- -0.007575757575757575757575757576,
- 0.021092796092796092796092796093,
- -0.083333333333333333333333333333,
- 0.44325980392156862745098039216,
- -3.05395433027011974380395433027,
- 26.4562121212121212121212121212,
- -281.460144927536231884057971014,
- 3607.5105463980463980463980464,
- -54827.583333333333333333333333,
- 974936.82385057471264367816092,
- -2.0052695796688078946143462272e+07,
- 4.7238486772162990196078431373e+08,
- -1.2635724795916666666666666667e+10,
- 3.8087931125245368811553022079e+11,
- -1.2850850499305083333333333333e+13,
- 4.8241448354850170371581670362e+14,
- -2.0040310656516252738108421663e+16,
- 9.1677436031953307756992753623e+17,
- -4.5979888343656503490437943262e+19,
- 2.5180471921451095697089023320e+21,
- -1.5001733492153928733711440151e+23,
- 9.6899578874635940656497942895e+24,
- -6.7645882379292820990945242302e+26,
- 5.0890659468662289689766332916e+28,
- -4.1147288792557978697665486068e+30,
- 3.5666582095375556109684574609e+32,
- -3.3066089876577576725680214670e+34,
- 3.2715634236478716264211227016e+36,
- -3.4473782558278053878256455080e+38,
- 3.8614279832705258893092720200e+40,
- -4.5892974432454332168863989006e+42,
- 5.7775386342770431824884825688e+44,
- -7.6919858759507135167410075972e+46,
- 1.0813635449971654696354033351e+49,
- -1.6029364522008965406067102346e+51,
- 2.5019479041560462843656661499e+53,
- -4.1067052335810212479752045004e+55,
- 7.0798774408494580617452972433e+57,
- -1.2804546887939508790190849756e+60,
- 2.4267340392333524078020892067e+62,
- -4.8143218874045769355129570066e+64,
- 9.9875574175727530680652777408e+66,
- -2.1645634868435185631335136160e+69,
- 4.8962327039620553206849224516e+71, /* ... */
- -1.1549023923963519663954271692e+74, /* zeta(-97) */
- 2.8382249570693706959264156336e+76 /* zeta(-99) */
- };
-
-
- /* coefficients for Maclaurin summation in hzeta()
- * B_{2j}/(2j)!
- */
- static double hzeta_c[15] = {
- 1.00000000000000000000000000000,
- 0.083333333333333333333333333333,
- -0.00138888888888888888888888888889,
- 0.000033068783068783068783068783069,
- -8.2671957671957671957671957672e-07,
- 2.0876756987868098979210090321e-08,
- -5.2841901386874931848476822022e-10,
- 1.3382536530684678832826980975e-11,
- -3.3896802963225828668301953912e-13,
- 8.5860620562778445641359054504e-15,
- -2.1748686985580618730415164239e-16,
- 5.5090028283602295152026526089e-18,
- -1.3954464685812523340707686264e-19,
- 3.5347070396294674716932299778e-21,
- -8.9535174270375468504026113181e-23
- };
-
- #define ETA_POS_TABLE_NMAX 100
- static double eta_pos_int_table[ETA_POS_TABLE_NMAX+1] = {
- 0.50000000000000000000000000000, /* eta(0) */
- M_LN2, /* eta(1) */
- 0.82246703342411321823620758332, /* ... */
- 0.90154267736969571404980362113,
- 0.94703282949724591757650323447,
- 0.97211977044690930593565514355,
- 0.98555109129743510409843924448,
- 0.99259381992283028267042571313,
- 0.99623300185264789922728926008,
- 0.99809429754160533076778303185,
- 0.99903950759827156563922184570,
- 0.99951714349806075414409417483,
- 0.99975768514385819085317967871,
- 0.99987854276326511549217499282,
- 0.99993917034597971817095419226,
- 0.99996955121309923808263293263,
- 0.99998476421490610644168277496,
- 0.99999237829204101197693787224,
- 0.99999618786961011347968922641,
- 0.99999809350817167510685649297,
- 0.99999904661158152211505084256,
- 0.99999952325821554281631666433,
- 0.99999976161323082254789720494,
- 0.99999988080131843950322382485,
- 0.99999994039889239462836140314,
- 0.99999997019885696283441513311,
- 0.99999998509923199656878766181,
- 0.99999999254955048496351585274,
- 0.99999999627475340010872752767,
- 0.99999999813736941811218674656,
- 0.99999999906868228145397862728,
- 0.99999999953434033145421751469,
- 0.99999999976716989595149082282,
- 0.99999999988358485804603047265,
- 0.99999999994179239904531592388,
- 0.99999999997089618952980952258,
- 0.99999999998544809143388476396,
- 0.99999999999272404460658475006,
- 0.99999999999636202193316875550,
- 0.99999999999818101084320873555,
- 0.99999999999909050538047887809,
- 0.99999999999954525267653087357,
- 0.99999999999977262633369589773,
- 0.99999999999988631316532476488,
- 0.99999999999994315658215465336,
- 0.99999999999997157829090808339,
- 0.99999999999998578914539762720,
- 0.99999999999999289457268000875,
- 0.99999999999999644728633373609,
- 0.99999999999999822364316477861,
- 0.99999999999999911182158169283,
- 0.99999999999999955591079061426,
- 0.99999999999999977795539522974,
- 0.99999999999999988897769758908,
- 0.99999999999999994448884878594,
- 0.99999999999999997224442439010,
- 0.99999999999999998612221219410,
- 0.99999999999999999306110609673,
- 0.99999999999999999653055304826,
- 0.99999999999999999826527652409,
- 0.99999999999999999913263826204,
- 0.99999999999999999956631913101,
- 0.99999999999999999978315956551,
- 0.99999999999999999989157978275,
- 0.99999999999999999994578989138,
- 0.99999999999999999997289494569,
- 0.99999999999999999998644747284,
- 0.99999999999999999999322373642,
- 0.99999999999999999999661186821,
- 0.99999999999999999999830593411,
- 0.99999999999999999999915296705,
- 0.99999999999999999999957648353,
- 0.99999999999999999999978824176,
- 0.99999999999999999999989412088,
- 0.99999999999999999999994706044,
- 0.99999999999999999999997353022,
- 0.99999999999999999999998676511,
- 0.99999999999999999999999338256,
- 0.99999999999999999999999669128,
- 0.99999999999999999999999834564,
- 0.99999999999999999999999917282,
- 0.99999999999999999999999958641,
- 0.99999999999999999999999979320,
- 0.99999999999999999999999989660,
- 0.99999999999999999999999994830,
- 0.99999999999999999999999997415,
- 0.99999999999999999999999998708,
- 0.99999999999999999999999999354,
- 0.99999999999999999999999999677,
- 0.99999999999999999999999999838,
- 0.99999999999999999999999999919,
- 0.99999999999999999999999999960,
- 0.99999999999999999999999999980,
- 0.99999999999999999999999999990,
- 0.99999999999999999999999999995,
- 0.99999999999999999999999999997,
- 0.99999999999999999999999999999,
- 0.99999999999999999999999999999,
- 1.00000000000000000000000000000,
- 1.00000000000000000000000000000,
- 1.00000000000000000000000000000,
- };
-
-
- #define ETA_NEG_TABLE_NMAX 99
- #define ETA_NEG_TABLE_SIZE 50
- static double eta_neg_int_table[ETA_NEG_TABLE_SIZE] = {
- 0.25000000000000000000000000000, /* eta(-1) */
- -0.12500000000000000000000000000, /* eta(-3) */
- 0.25000000000000000000000000000, /* ... */
- -1.06250000000000000000000000000,
- 7.75000000000000000000000000000,
- -86.3750000000000000000000000000,
- 1365.25000000000000000000000000,
- -29049.0312500000000000000000000,
- 800572.750000000000000000000000,
- -2.7741322625000000000000000000e+7,
- 1.1805291302500000000000000000e+9,
- -6.0523980051687500000000000000e+10,
- 3.6794167785377500000000000000e+12,
- -2.6170760990658387500000000000e+14,
- 2.1531418140800295250000000000e+16,
- -2.0288775575173015930156250000e+18,
- 2.1708009902623770590275000000e+20,
- -2.6173826968455814932120125000e+22,
- 3.5324148876863877826668602500e+24,
- -5.3042033406864906641493838981e+26,
- 8.8138218364311576767253114668e+28,
- -1.6128065107490778547354654864e+31,
- 3.2355470001722734208527794569e+33,
- -7.0876727476537493198506645215e+35,
- 1.6890450341293965779175629389e+38,
- -4.3639690731216831157655651358e+40,
- 1.2185998827061261322605065672e+43,
- -3.6670584803153006180101262324e+45,
- 1.1859898526302099104271449748e+48,
- -4.1120769493584015047981746438e+50,
- 1.5249042436787620309090168687e+53,
- -6.0349693196941307074572991901e+55,
- 2.5437161764210695823197691519e+58,
- -1.1396923802632287851130360170e+61,
- 5.4180861064753979196802726455e+63,
- -2.7283654799994373847287197104e+66,
- 1.4529750514918543238511171663e+69,
- -8.1705519371067450079777183386e+71,
- 4.8445781606678367790247757259e+74,
- -3.0246694206649519336179448018e+77,
- 1.9858807961690493054169047970e+80,
- -1.3694474620720086994386818232e+83,
- 9.9070382984295807826303785989e+85,
- -7.5103780796592645925968460677e+88,
- 5.9598418264260880840077992227e+91,
- -4.9455988887500020399263196307e+94,
- 4.2873596927020241277675775935e+97,
- -3.8791952037716162900707994047e+100,
- 3.6600317773156342245401829308e+103,
- -3.5978775704117283875784869570e+106 /* eta(-99) */
- };
-
-
- /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/
-
-
- int gsl_sf_hzeta_e(const double s, const double q, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(s <= 1.0 || q <= 0.0) {
- DOMAIN_ERROR(result);
- }
- else {
- const double max_bits = 54.0;
- const double ln_term0 = -s * log(q);
-
- if(ln_term0 < GSL_LOG_DBL_MIN + 1.0) {
- UNDERFLOW_ERROR(result);
- }
- else if(ln_term0 > GSL_LOG_DBL_MAX - 1.0) {
- OVERFLOW_ERROR (result);
- }
- else if((s > max_bits && q < 1.0) || (s > 0.5*max_bits && q < 0.25)) {
- result->val = pow(q, -s);
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else if(s > 0.5*max_bits && q < 1.0) {
- const double p1 = pow(q, -s);
- const double p2 = pow(q/(1.0+q), s);
- const double p3 = pow(q/(2.0+q), s);
- result->val = p1 * (1.0 + p2 + p3);
- result->err = GSL_DBL_EPSILON * (0.5*s + 2.0) * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- /* Euler-Maclaurin summation formula
- * [Moshier, p. 400, with several typo corrections]
- */
- const int jmax = 12;
- const int kmax = 10;
- int j, k;
- const double pmax = pow(kmax + q, -s);
- double scp = s;
- double pcp = pmax / (kmax + q);
- double ans = pmax*((kmax+q)/(s-1.0) + 0.5);
-
- for(k=0; k<kmax; k++) {
- ans += pow(k + q, -s);
- }
-
- for(j=0; j<=jmax; j++) {
- double delta = hzeta_c[j+1] * scp * pcp;
- ans += delta;
- if(fabs(delta/ans) < 0.5*GSL_DBL_EPSILON) break;
- scp *= (s+2*j+1)*(s+2*j+2);
- pcp /= (kmax + q)*(kmax + q);
- }
-
- result->val = ans;
- result->err = 2.0 * (jmax + 1.0) * GSL_DBL_EPSILON * fabs(ans);
- return GSL_SUCCESS;
- }
- }
- }
-
-
- int gsl_sf_zeta_e(const double s, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(s == 1.0) {
- DOMAIN_ERROR(result);
- }
- else if(s >= 0.0) {
- return riemann_zeta_sgt0(s, result);
- }
- else {
- /* reflection formula, [Abramowitz+Stegun, 23.2.5] */
-
- gsl_sf_result zeta_one_minus_s;
- const int stat_zoms = riemann_zeta1m_slt0(s, &zeta_one_minus_s);
- const double sin_term = sin(0.5*M_PI*s)/M_PI;
-
- if(sin_term == 0.0) {
- result->val = 0.0;
- result->err = 0.0;
- return GSL_SUCCESS;
- }
- else if(s > -170) {
- /* We have to be careful about losing digits
- * in calculating pow(2 Pi, s). The gamma
- * function is fine because we were careful
- * with that implementation.
- * We keep an array of (2 Pi)^(10 n).
- */
- const double twopi_pow[18] = { 1.0,
- 9.589560061550901348e+007,
- 9.195966217409212684e+015,
- 8.818527036583869903e+023,
- 8.456579467173150313e+031,
- 8.109487671573504384e+039,
- 7.776641909496069036e+047,
- 7.457457466828644277e+055,
- 7.151373628461452286e+063,
- 6.857852693272229709e+071,
- 6.576379029540265771e+079,
- 6.306458169130020789e+087,
- 6.047615938853066678e+095,
- 5.799397627482402614e+103,
- 5.561367186955830005e+111,
- 5.333106466365131227e+119,
- 5.114214477385391780e+127,
- 4.904306689854036836e+135
- };
- const int n = floor((-s)/10.0);
- const double fs = s + 10.0*n;
- const double p = pow(2.0*M_PI, fs) / twopi_pow[n];
-
- gsl_sf_result g;
- const int stat_g = gsl_sf_gamma_e(1.0-s, &g);
- result->val = p * g.val * sin_term * zeta_one_minus_s.val;
- result->err = fabs(p * g.val * sin_term) * zeta_one_minus_s.err;
- result->err += fabs(p * sin_term * zeta_one_minus_s.val) * g.err;
- result->err += GSL_DBL_EPSILON * (fabs(s)+2.0) * fabs(result->val);
- return GSL_ERROR_SELECT_2(stat_g, stat_zoms);
- }
- else {
- /* The actual zeta function may or may not
- * overflow here. But we have no easy way
- * to calculate it when the prefactor(s)
- * overflow. Trying to use log's and exp
- * is no good because we loose a couple
- * digits to the exp error amplification.
- * When we gather a little more patience,
- * we can implement something here. Until
- * then just give up.
- */
- OVERFLOW_ERROR(result);
- }
- }
- }
-
-
- int gsl_sf_zeta_int_e(const int n, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(n < 0) {
- if(!GSL_IS_ODD(n)) {
- result->val = 0.0; /* exactly zero at even negative integers */
- result->err = 0.0;
- return GSL_SUCCESS;
- }
- else if(n > -ZETA_NEG_TABLE_NMAX) {
- result->val = zeta_neg_int_table[-(n+1)/2];
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- return gsl_sf_zeta_e((double)n, result);
- }
- }
- else if(n == 1){
- DOMAIN_ERROR(result);
- }
- else if(n <= ZETA_POS_TABLE_NMAX){
- result->val = zeta_pos_int_table[n];
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- result->val = 1.0;
- result->err = GSL_DBL_EPSILON;
- return GSL_SUCCESS;
- }
- }
-
-
- int gsl_sf_eta_int_e(int n, gsl_sf_result * result)
- {
- if(n > ETA_POS_TABLE_NMAX) {
- result->val = 1.0;
- result->err = GSL_DBL_EPSILON;
- return GSL_SUCCESS;
- }
- else if(n >= 0) {
- result->val = eta_pos_int_table[n];
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- /* n < 0 */
-
- if(!GSL_IS_ODD(n)) {
- /* exactly zero at even negative integers */
- result->val = 0.0;
- result->err = 0.0;
- return GSL_SUCCESS;
- }
- else if(n > -ETA_NEG_TABLE_NMAX) {
- result->val = eta_neg_int_table[-(n+1)/2];
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- gsl_sf_result z;
- gsl_sf_result p;
- int stat_z = gsl_sf_zeta_int_e(n, &z);
- int stat_p = gsl_sf_exp_e((1.0-n)*M_LN2, &p);
- int stat_m = gsl_sf_multiply_e(-p.val, z.val, result);
- result->err = fabs(p.err * (M_LN2*(1.0-n)) * z.val) + z.err * fabs(p.val);
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_ERROR_SELECT_3(stat_m, stat_p, stat_z);
- }
- }
- }
-
-
- int gsl_sf_eta_e(const double s, gsl_sf_result * result)
- {
- /* CHECK_POINTER(result) */
-
- if(s > 100.0) {
- result->val = 1.0;
- result->err = GSL_DBL_EPSILON;
- return GSL_SUCCESS;
- }
- else if(fabs(s-1.0) < 10.0*GSL_ROOT5_DBL_EPSILON) {
- double del = s-1.0;
- double c0 = M_LN2;
- double c1 = M_LN2 * (M_EULER - 0.5*M_LN2);
- double c2 = -0.0326862962794492996;
- double c3 = 0.0015689917054155150;
- double c4 = 0.00074987242112047532;
- result->val = c0 + del * (c1 + del * (c2 + del * (c3 + del * c4)));
- result->err = 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_SUCCESS;
- }
- else {
- gsl_sf_result z;
- gsl_sf_result p;
- int stat_z = gsl_sf_zeta_e(s, &z);
- int stat_p = gsl_sf_exp_e((1.0-s)*M_LN2, &p);
- int stat_m = gsl_sf_multiply_e(1.0-p.val, z.val, result);
- result->err = fabs(p.err * (M_LN2*(1.0-s)) * z.val) + z.err * fabs(p.val);
- result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val);
- return GSL_ERROR_SELECT_3(stat_m, stat_p, stat_z);
- }
- }
-
-
- /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/
-
- #include "eval.h"
-
- double gsl_sf_zeta(const double s)
- {
- EVAL_RESULT(gsl_sf_zeta_e(s, &result));
- }
-
- double gsl_sf_hzeta(const double s, const double a)
- {
- EVAL_RESULT(gsl_sf_hzeta_e(s, a, &result));
- }
-
- double gsl_sf_zeta_int(const int s)
- {
- EVAL_RESULT(gsl_sf_zeta_int_e(s, &result));
- }
-
- double gsl_sf_eta_int(const int s)
- {
- EVAL_RESULT(gsl_sf_eta_int_e(s, &result));
- }
-
- double gsl_sf_eta(const double s)
- {
- EVAL_RESULT(gsl_sf_eta_e(s, &result));
- }
-